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Abstract

Hyperbolicmatrix functions are essential for solving hyperbolic coupledpartial differential equa-
tions. In fact the best analytic-numerical approximations for resolving these equations come
from the use of hyperbolic matrix functions. The hyperbolic matrix sine and cosine sh(A), ch(A)
(A ∈ Mr(C)) can be calculated using numerous different techniques. In this article we derive
some explicit formulas of sh(tA) and ch(tA) (t ∈ R) using the Fibonacci-Hörner and the poly-
nomial decomposition, these decompositions are calculated using the generalized Fibonacci se-
quences combinatorial properties in the algebra of square matrices. Finally we introduce a third
approach based on the homogeneous linear differential equations. Andwe provide some exam-
ples to illustrate your methods.

Keywords: matrix functions; generalized Fibonacci sequence; hyperbolicmatrix functions; Fibonacci-
Horner decomposition.
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1 Introduction

Numerous fields of mathematics, engineering and applied science use the hyperbolic matrix
functions. Notably these functions are used as the solution of coupled partial differential systems
of hyperbolic type, [3, 1].

The hyperbolic matrix functions can be defined for every matrix A ∈Mr(C) by :

ch(A) =
∑
n≥0

A2n

(2n)!
, sh(A) =

∑
n≥0

A2n+1

(2n+ 1)!
. (1)

Hyperbolic sine and hyperbolic cosine represent the odd part and the even part of the exponential
function respectively, that is

ch(A) =
eA + e−A

2
, sh(A) =

eA − e−A

2
. (2)

For computing hyperbolic matrix functions, a wide range of approaches and techniques have been
developed to provide various effective expressions, notably methods and algorithms based on
Hermite matrix polynomials have been extensively studied [6, 8]. Another approach utilizing
orthogonal matrix polynomials has been introduced in [7]. And since the Taylor series expansion
of the hyperbolic matrix functions have an infinite radius of convergence a Schur-Parlett algorithm
can be employedwhich uses a Schur decomposition with reordering and blocking followed by the
block form of a recurrence of Parlett to approximate the values of the hyperbolic matrix functions,
[5].

Coupled partial differential problems often appear in a broad range of technical and scientific
fields.

Using a series that utilized hyperbolic matrix functions, we could construct an exact solution
of coupled hyperbolic systems of the type:

vtt(x, t)−M1vxx(x, t) = 0, 0 < x < 1, t > 0,

v(0, t) +N1vx(0, t) = 0, t > 0,

M2v(1, t) +N2vx(1, t) = 0, t > 0,

v(x, 0) = g(x), 0 ≤ x ≤ 1,

vt(x, 0) = h(x), 0 ≤ x ≤ 1,

whereM1,N1,M2 andN2 are inMr(C), and the unknown v, g and h are r-vector valued functions
(see [9]).

The computation of hyperbolic matrix functions is still a fascinating subject. The primary goal
of this paper is to offer three basic techniques for the computation of ch(tA) and sh(tA) for every
A ∈ GLr(C) the first method uses the Fibonacci-Hörner decomposition of the matrix powers (see
[11, 2, 4]), to calculate some specific formulas of ch(tA) and sh(tA) for every A ∈ GLr(C). The
second method foundational tools are the dynamic solution of the r-th order scalar differential
equations and the combinatorial formulation of r-generalized Fibonacci sequences.[15]. The last
method uses the homogeneous linear differential equations.

Fibonacci-Horner’s algorithm for evaluating a random polynomial is the most efficient one.
Alexander Ostrowski and Victor Pan demonstrated how to calculate a degree n polynomial using
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only O(
√
n) and O(n) scalar multiplications, however this method is not the most efficient when

applied to a matrix. In fact a matrix polynomial of degree n with square matrix A ∈ Mm(C) as
variables can be evaluated in O(m2.3

√
n+m2n) time. Ifm = n, this is less than O(n3).

2 Decomposition of the Hyperbolic Matrix Functions via Recursive
Relations

2.1 Linear recurrence relations in the space of square matrix

Let A ∈ Mr(C) with characteristic polynomial P (z) = zr − a0z
r−1 − · · · − ar−1. By using the

Cayley-Hamilton theoremwe obtainP (A) = Θr (the null matrix of order r×r). Consequently, the
matrix sequence {An}n≥0 is a r-generalized Fibonacci sequence inMr(C), its initial conditions and
coefficients areA0 = Ir (the matrix identity),A, · · · , Ar−1 and a0, · · · , ar−1, respectively. WhenA
is nonsingular, we consider the r- generalized Fibonacci sequence {An}n≥−r+1, out of practicality,
its initial conditions and coefficients are A−r+1, · · · , A−1, A0 = Ir and a0, · · · , ar−1, respectively.
following the findings of [15], we get

An = uA(n)A0 + uA(n− 1)A1 + · · ·+ uA(n− r + 1)Ar−1, for every n ≥ r, (3)

with
A0 = Ir, Ai = Ai − a0A

i−1 − · · · − ai−1Ir, for every i = 1, · · · , r − 1. (4)

We define the sequence {uA(n)}n≥−r+1 by,

uA(n) =
∑

k0+2k1+···+rkr−1=n

(k0 + k1 + · · ·+ kr−1)!

k0!k1! · · · kr−1!
ak0
0 a

k1
1 · · · akr−1

r−1 , (5)

for all n ≥ 1, with uA(0) = 1 and uA(n) = 0 for −r + 1 ≤ n ≤ −1. In [15, 13] It was established
that the sequence {uA(n)}n≥−r+1 satisfies the linear recurrence relation given by :

uA(n+ 1) = a0uA(n) + a1uA(n− 1) + · · ·+ ar−1uA(n− r + 1), for every n ≥ 0. (6)

Simply put, {uA(n)}n≥1−r is a r-generalized Fibonacci sequence.

Actually, a straightforward proof by induction demonstrates that the decomposition (3) of the
powers An (n ≥ r) is still valid for every A ∈Mr(C) (singular or nonsingular), with the
Ak (0 ≤ k ≤ r − 1) given by (4) and the sequence {uA(n)}n≥1−r by (5).

The set of matrices {A0 , A1 , · · · , Ar−1} is known as the Fibonacci-Horner basis of the power
decomposition (3) of A.

The coefficients of uA(n)(n ⩾ 1) are obtained using the recursive formula (6). However, we
can also calculate them using the determinant of the n×n upperHessenbergmatrix [10, 17], given
by

uA(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . ar−1 0 . . . 0
−1 a0 . . . ar−2 ar−1 . . . 0
...

... . . . . . . . . . . . .
...

...
... . . .

. . . . . . . . .
...

0 0 . . . . . . . . . a0 a1
0 0 . . . . . . . . . −1 a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (7)
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For r+ 1 ⩽ n, expression (7) is the consequence of the determinant of a Toeplitz ( r+ 1 ) banded
matrix.

A determining representation for the n-th power matrix An(n ⩾ r) in the power basis is given
by

An =

r−1∑
k=0

u
(k)
n−r+1A

r−1−k =

r−1∑
k=0

u
(r−1−k)
n−r+1 Ak, (8)

where u(k)A (n− r + 1), is the determinant of the matrix given by the expression (7), with the first
row shifted k positions forward, (see Proposition 2.2 [14]).

2.2 Fibonacci-Hörner decomposition of the hyperbolic matrix functions

In the flowing theorem we will introduce the Fibonacci-Hörner decomposition of the hyper-
bolic sine and cosine matrix functions.

Theorem 2.1. Let A ∈ Mr(C) and RA(z) = zr − a0z
r−1 − · · · − ar−1 an annihilator polynomial of A.

Let {Ai}0≤i≤r−1 be the Fibonacci-Hörner basis of A. Then, we have

ch(tA) =

r−1∑
i=0

ϕci (t)Ai, with ϕci (t) =
∑
n≥0

t2n

(2n)!
uA(2n− i), (9)

sh(tA) =

r−1∑
i=0

ϕsi (t)Ai, with ϕsi (t) =
∑
n≥0

t2n+1

(2n+ 1)!
uA(2n+ 1− i), (10)

with uA(n) is given by (5).

Proof. By substituting (3) in the series expansion of the hyperbolic cosine function we obtain

ch(tA) =
∑
n≥0

t2n

(2n)!
A2n,

=
∑
n≥0

t2n

(2n)!

r−1∑
i=0

uA(2n− i)Ai,

=
r−1∑
i=0

[
∑
n≥0

t2n

(2n)!
uA(2n− i)]Ai,

=

r−1∑
i=0

ϕci (t)Ai.

Applying the same approach we obtain the Fibonacci-Hörner decomposition hyperbolic sinus
function.

Example 2.1. (The boundary problem)
In this example we will calculate a solution of the he boundary value problem

vtt(x, t)−M1vxx(x, t) = 0, 0 < x < 1, t > 0,

v(0, t) +N1vx(0, t) = 0, t > 0,

M2v(1, t) +N2vx(1, t) = 0, t > 0,

204



Y. Laarichi et al. Malaysian J. Math. Sci. 17(2): 201–210 (2023) 201 - 210

of a particular form

v(x, t) = A(t)B(x), A(t) ∈M2(C), B(x) ∈ C
2.

WithM1 =

(
1 0
0 1

)
∈M2(R),

R

(
0 −1
1 0

)
∈M2(R) is a square root of the matrix −M1 ( R2 = −M1).

In [9] it was shown that B and A satisfy :

A′′(t) + α2M1A(t) = 0, α ⩾ 0, t ⩾ 0, (11)
B′′(x) + α2B(x) = 0, α ⩾ 0, 0 < x < 1. (12)

A generalM2(C) solution of (11) is given by

A(t, λ) = X1(t, α)D(α) +X2(t, α)E(α), D(α), E(α) ∈M2(C).

With

X1(t, α) =

{
ch(αRt), α > 0,

I, α = 0,
, X2(t, α) =

{
(αR)−1sh(αRt), α > 0,

tI, α = 0.

Using the Fibonacci-Hörner decomposition of the hyperbolic matrix functions we get,

P (z) = z2 + 1 is an annihilator polynomial of R. Thus we have a0 = 0, a1 = −1 and the Fibonacci-
Hörner basis is R0 = I2 and R1 = R.

The sequence (uR(n))n≥−1 is given by
{
uR(l) = (−1)

l
2 , if l is even,

uR(l) = 0, if l is odd.

A direct computation using the expression (9 and 10) yields:

ch(αRt) = ϕc0(αt)R0 + ϕc1(αt)R1 = cos(αt)I2,

sh(αRt) = ϕc0(αt)R0 + ϕc1(αt)R1 = sin(−αt)R.

And a general C2 solution of (12) is given by

B(x, α) =

{
sin(αx)D′(α) + cos(αx)E′(α), α > 0,

xD′(0) + E′(0), α = 0.

2.3 Polynomial decomposition of the hyperbolic matrix functions

In this sectionwewill introduce two approaches for calculating the polynomial decomposition
of the hyperbolic matrix functions, the first approach is based in the representation for the n-th
power matrix (8) the second method is dependent on the the polynomial decomposition of the
exponential matrix function already established in [16].

Theorem 2.2. Let A ∈ Md(C), and R(z) = zr − a0z
r−1 − · · · − ar−1(2 ⩽ r ⩽ d) an annihilator

polynomial of A. Then, for all t ∈ R, we have,

ch(tA) =

r−1∑
k=0

Φk(t)A
k, (13)
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and

sh(tA) =

r−1∑
k=0

Ψk(t)A
k. (14)

where

Φk(t) =


tk

k!
+
∑+∞

n=[ r+1
2 ]

u
(r−1−k)
2n−r+1

t2n

(2n)!
, if k is even,

∑+∞
n=[ r+1

2 ]
u
(r−1−k)
2n−r+1

t2n

(2n)!
, if k is odd.

,

and

Ψk(t) =


∑+∞

n=[ r2 ]
u
(r−1−k)
2n−r+2

t2n+1

(2n+ 1)!
, if k is even,

tk

k!
+
∑+∞

n=[ r2 ]
u
(r−1−k)
2n−r+2

t2n+1

(2n+ 1)!
, if k is odd.

and the coefficients u(r−1−s)
A (n− r + 1) are as given in (8).

Proof. From (1) we obtain, ch(tA) =
∑[ r−1

2 ]
n=0

t2n

(2n)!
A2n +

∑+∞
n=[ r+1

2 ]

t2n

(2n)!
A2n, and

sh(tA) =
∑[ r−2

2 ]
n=0

t2n+1

(2n+ 1)!
A2n+1 +

∑+∞
n=[ r2 ]

t2n+1

(2n+ 1)!
A2n+1.

Therefore, by using (8) we deduce that

ch(tA) =
∑[ r−1

2 ]

k=0

t2k

(2k)!
A2k +

∑+∞
n=[ r+1

2 ]

t2n

(2n)!

∑r−1
k=0 u

(r−1−k)
2n−r+1 A

k, and

sh(tA) =
∑[ r−2

2 ]
n=0

t2n+1

(2n+ 1)!
A2n+1 +

∑+∞
n=[ r2 ]

t2n+1

(2n+ 1)!

∑r−1
k=0 u

(r−1−k)
2n−r+2 A

k.

Considering the uniform convergence, we get

ch(tA) =

r−1∑
k=0

Φk(t)A
k, and sh(tA) =

r−1∑
k=0

Ψk(t)A
k.

Another approach for computing the polynomial decomposition of the hyperbolicmatrix func-
tions is using the polynomial decomposition of the exponential matrix function.

Let A ∈Mr(C) whose characteristic polynomial is given by PA(z) = zr − a0z
r−1 − · · · − ar−1,

with ar−1 ̸= 0. and t ∈ R , the Fibonacci-Hörner decomposition of the Matrix Exponential is given
by

etA =

r−1∑
k=0

Ak

[
tk

k!
+

k∑
j=0

ar−1+j−kρ
(r−1−j)
A (t)

]
, (15)

where ρ(k) refers to the derivative of order k of the function

ρA(t) =

+∞∑
n=0

tn+r−1

(n+ r − 1)!
uA(n), (16)

(see [16] for proof).
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Theorem 2.3. Let A ∈Mr(C), and t ∈ R and PA(z) = zr − a0z
r−1 − · · · − ar−1, with ar−1 ̸= 0 be its

characteristic polynomial. We have :

sh(tA) =

[ r−2
2 ]∑

i=0

t2i+1A2i+1

(2i+ 1)!
+

r−1∑
i=0

Ai
k∑

j=0

ar−1+j−iψ
(r−i−j)
s (t), (17)

and

ch(tA) =

[ r−1
2 ]∑

i=0

t2iA2i

(2i)!
+

r−1∑
i=0

Ai
i∑

j=0

ar−1+j−iψ
(r−i−j)
c (t). (18)

Where ψ(k)
s and ψ(k)

c refers to the derivative of order k of the functions defined by :

ψs(t) =

+∞∑
n=0

t2(n+r)−1

(2(n+ r)− 1)!
uA(2n), (19)

ψc(t) =

+∞∑
n=0

t2(n+r)

(2(n+ r))!
uA(2n+ 1). (20)

Proof. Using the formula ch(tA) = etA + e−tA

2
and sh(tA) = etA − e−tA

2
.

Applying (15) to the matrix A and −Awe obtain

ch(tA) =
1

2

r−1∑
k=0

Ak

[
tk + (−t)k

k!
+

k∑
j=0

ar−1+j−k(ρ
(r−1−j)
A (t) + ρ

(r−1−j)
A (−t))

]
,

sh(tA) =
1

2

r−1∑
k=0

Ak

[
tk − (−t)k

k!
+

k∑
j=0

ar−1+j−k(ρ
(r−1−j)
A (t)− ρ

(r−1−j)
A (−t))

]
.

A direct computation yields the desired results.

2.4 Hyperbolic matrix functions and homogeneous linear differential equations

In this section we will introduce an additional method for calculating the hyperbolic matrix
functions that uses the solutions of homogeneous linear differential equations.

Theorem 2.4. Let A ∈Mr(C), we have

etA =

r−1∑
k=0

xk(t)A
k, (21)

with xk, k ∈ {0, 1, 2, ..., r − 1} are the solution to the ordinary differential equation :

y(r)(t)− a0y
(r−1)(t)− a1y

(r−2)(t)− ...− ar−1y(t) = 0.

With the initial conditions : y(l)k (0) = δkl, (The Kronecker symbol) for all l ∈ {0, 1, 2, ..., r − 1}
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(For proof and an examples, see [12]).

We provide the following examples to illustrate our approach:

Example 2.2. Let A =

(
5 3
−6 −4

)
∈M2(R).

Its characteristic polynomial is given by PA(x) = x2 − x− 2.

We consider the differential equation y′′(x)− y′(x)− 2y(x) = 0, its solutions are the functions
y : t 7→ α1e

−t + α2e
2t, (with α1, α2 are constant).

A solution of the differential equation verifying the conditions x0(0) = 1, x′0(0) = 0 is:

x0 : t 7→ 2

3
e−t +

1

3
e2t.

A solution of the differential equation verifying the conditions x1(0) = 0, x′1(0) = 1 is:

x1 : t 7→ −1

3
e−t +

1

3
e2t).

By applying the formula (21), we get:

etA = (2eit − e2it)I2 + (e2it − eit)A,

and
e−tA = (2e−it − e−2it)I2 + (e−2it − e−it)A.

At the end, we have the expressions for ch(tA) and sh(tA)

ch(tA) =

[
2

3
ch(t) +

1

3
ch(2t)

]
I +

[
− 1

3
ch(t) +

1

3
ch(2t)

]
A,

and
sh(tA) =

[
2

3
sh(t) +

1

3
sh(2t)

]
I +

[
− 1

3
ch(t) +

1

3
ch(2t)

]
A.

Example 2.3. Let A =


37 15 −19 4
−11 −3 4 1
63 27 −34 9
19 9 −11 4

 ∈ M4(R), applying the previous approach, we obtain :

sh(tA) = z0(t)I4 + z1(t)A+ z2(t)A
2 + z3(t)A

3,

with


z0(t) = 1,

z1(t) = − 5
6 + 1

2sh(−t) +
1
2sh(2t)−

1
6sh(3t),

z2(t) =
5
6 + 5

12sh(−t) +
1
3sh(2t)−

1
12sh(3t),

z3(t) =
1
6 − 1

12sh(−t)−
1
6sh(2t) +

1
12sh(3t).

3 Conclusion

The definition of matrix function using interpolating polynomials has been widely explored in
the literature. In the study of matrix functions, the theory of constituent matrices is crucial, and it
continues to be a topic of research.
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This paper looked at three different ways to calculate the hyperbolic trigonometric matrix. the
first method uses the Fibonacci-Hörner decomposition, the second uses the polynomial decompo-
sition of the hyperbolicmatrix functions, an additionalmethod is given that uses the homogeneous
linear differential equations. In Section 3, we provide two examples from the literature to demon-
strate our findings. It’s worth noting that our findings can be applied to various types of common
functions, such as the resolvent of a matrix.

When we compare the formulas established in the previous sections to the literature on the
subject, we believe they are novel. As far as we are aware, our approach differs from those being
examined. it is worth exploring the idea of creating an algorithm based in our research, and
exploring the applicability of these methods to other matrix functions
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